Skip to main content

China Makes History Again: Chang'e-6 Returns with Groundbreaking Moon Samples

In a remarkable achievement, China has successfully collected samples from the far side of the moon, marking a significant milestone in space exploration. The Chang'e-6 mission, launched on May 3, touched down in the Apollo crater within the vast South Pole-Aitken basin on June 1. During its brief but productive stay, the spacecraft gathered approximately 2 kilograms of lunar material using a scoop and drill. The samples, now stored in an ascent vehicle, are expected to return to Earth on June 25, landing in Inner Mongolia. This historic achievement not only demonstrates China's space program prowess but also provides scientists with a unique opportunity to unravel the mysteries of the moon's formation and evolution.   Achievements: - *First-ever samples from the far side*: Chang'e-6 successfully collects lunar material from the moon's less-explored hemisphere. - *Second successful farside landing*: China builds on its 2019 achievement with...

James Webb Telescope Successfully Arrived at Its Final Destination

Webb fired its onboard thrusters for nearly five minutes (297 seconds) to complete the final postlaunch course correction to Webb’s trajectory. This mid-course correction burn inserted Webb toward its final orbit around the second Sun-Earth Lagrange point, or L2, nearly 1 million miles away from the Earth.

The final mid-course burn added only about 3.6 miles per hour (1.6 meters per second) – a mere walking pace – to Webb’s speed, which was all that was needed to send it to its preferred “halo” orbit around the L2 point.

“Webb, welcome home!” said NASA Administrator Bill Nelson. “Congratulations to the team for all of their hard work ensuring Webb’s safe arrival at L2 today. We’re one step closer to uncovering the mysteries of the universe. And I can’t wait to see Webb’s first new views of the universe this summer!”
Webb has used as little propellant as possible for course corrections while it travels out to the realm of L2, to leave as much remaining propellant as possible for Webb’s ordinary operations over its lifetime: station-keeping (small adjustments to keep Webb in its desired orbit) and momentum unloading (to counteract the effects of solar radiation pressure on the huge sunshield).
“During the past month, JWST has achieved amazing success and is a tribute to all the folks who spent many years and even decades to ensure mission success,” said Bill Ochs, Webb project manager at NASA’s Goddard Space Flight Center. “We are now on the verge of aligning the mirrors, instrument activation and commissioning, and the start of wondrous and astonishing discoveries.”

Now that Webb’s primary mirror segments and secondary mirror have been deployed from their launch positions, engineers will begin the sophisticated three-month process of aligning the telescope’s optics to nearly nanometer precision.

Comments

Popular posts from this blog

What Did The Flat Earth Theory Really Means?

Flat Earth Theory is a controversial and often misunderstood belief that the Earth is flat rather than round. This theory has gained a significant amount of attention in recent years, with many people claiming that the Earth is not a globe, but a flat disk. While the vast majority of scientists and researchers reject this theory, it continues to attract a dedicated group of believers who argue that the evidence supports their claims. In this blog post, we will explore the history of Flat Earth Theory, examine the evidence that is often cited by its supporters, and explain why the vast majority of scientists reject this theory. History of Flat Earth Theory The idea that the Earth is flat dates back to ancient times, with early civilizations such as the Greeks, Egyptians, and Hindus all believing in a flat Earth. However, by the time of the ancient Greeks, most educated people believed that the Earth was a sphere. This belief was based on observations of the Earth's shadow during lun...

Hubble Vs Webb Telescope: The Cartwheel Galaxy

The observatory has a packed schedule of science programs looking at all kinds of cosmic phenomena, like planets, stars, galaxies, black holes, and more. Webb will revolutionize our understanding of the universe — but first, researchers need time to analyze data and make sure that they understand what they’re seeing.  Webb has already captured more images beyond the ones you saw on July 12, and the Cartwheel Galaxy is just one example. Hold onto your intergalactic hats — we’ll be rolling those out in the coming weeks at nasa.gov/webb and on the NASAWebb social media channels. Some of those images give a first look at Webb’s capabilities, but are not part of science programs. In the meantime, you can revisit the first images at nasa.gov/webbfirstimages. We also have this page where you can find the full array of images and data at full resolution. News releases on results will be coming, too, once they have been reviewed. You may have seen scientists on social med...

Facts You Need to Know About Mars

Mars is the fourth planet from the Sun and is often referred to as the "Red Planet" due to its reddish appearance in the night sky. It is the second smallest planet in the Solar System, with a diameter of approximately 6,779 kilometers. Mars is often of great interest to scientists and space enthusiasts due to its potential to support life and its similarity to Earth in terms of geological features. In this blog post, we will delve into various aspects of Mars, including its history, geological features, atmosphere, climate, and potential for life. History: Mars is believed to have formed around 4.6 billion years ago, shortly after the formation of the Solar System. Like Earth, Mars is a terrestrial planet, meaning that it is composed primarily of rock and metal. It is thought that Mars may have had a similar early history to Earth, with the presence of liquid water on its surface and the potential for the development of life. Geological Features: Mars is known for its divers...