Skip to main content

China Makes History Again: Chang'e-6 Returns with Groundbreaking Moon Samples

In a remarkable achievement, China has successfully collected samples from the far side of the moon, marking a significant milestone in space exploration. The Chang'e-6 mission, launched on May 3, touched down in the Apollo crater within the vast South Pole-Aitken basin on June 1. During its brief but productive stay, the spacecraft gathered approximately 2 kilograms of lunar material using a scoop and drill. The samples, now stored in an ascent vehicle, are expected to return to Earth on June 25, landing in Inner Mongolia. This historic achievement not only demonstrates China's space program prowess but also provides scientists with a unique opportunity to unravel the mysteries of the moon's formation and evolution.   Achievements: - *First-ever samples from the far side*: Chang'e-6 successfully collects lunar material from the moon's less-explored hemisphere. - *Second successful farside landing*: China builds on its 2019 achievement with...

Bepicolumbo's New view of Mercury.


The ESA/JAXA BepiColombo mission captured this beautiful view of Mercury’s rich geological landscape on 23 June 2022 as the spacecraft flew past the planet for a gravity assist manoeuvre. 

The image was taken at 09:49:22 UTC by the Mercury Transfer Module’s Monitoring Camera 2, when the spacecraft was within about 920 km from the surface of Mercury. Closest approach of about 200 km took place shortly before, at 09:44 UTC. In this view, north is roughly towards the top right. 

The cameras provide black-and-white snapshots in 1024 x 1024 pixel resolution. The image has been interpolated to 2048 x 2048 pixels to sharpen the details. Some imaging artefacts such as horizontal striping are also visible.

Parts of the Mercury Planetary Orbiter can also be seen, notably the magnetometer boom running from bottom left to top right, and a small part of the medium-gain antenna at bottom right. The magnetometer boom roughly follows the ‘terminator’– the boundary between the night and day side of the planet. The lighting conditions in this image are different to any recorded by NASA’s MESSENGER mission to Mercury for this region, enhancing the differences between smooth terrains and older rough terrains. Large impact craters, including a 200 km wide multi-ringed basin partly hidden by the magnetometer boom can also clearly be made out along with other geological features.

One prominent, straight sunlit scarp runs from the bottom of the image and towards the magnetometer boom. It is about 200 km long – of which 170 km can be seen in this image – and stands 2 km high, and is part of Mercury’s global pattern of geologic faults. Previously unnamed, the International Astronomical Union Working Group for Planetary System Nomenclature assigned it the name ‘Challenger Rupes’ earlier this month, in anticipation of it being well seen in MCAM images during this swingby. This continues the convention of naming Mercury’s escarpments after scientific expeditions and ships used in voyages of discovery; in this case after HMS Challenger, whose 1872-1876 survey of the Atlantic and Pacific oceans and their floors laid the foundations of the modern science of oceanography.

To the right of Challenger Rupes is a 140 km wide unnamed crater which catches the eye thanks to the bright spot at about the one o’clock position just inside the rim, which is relatively fresh ejecta from a small young impact crater. The large crater’s floor is covered by lavas that extend into the surrounding smooth plains (Catuilla Planum). The crater floor is also cut by two prominent fault scarps roughly parallel to Challenger Rupes. The pattern of faults in this region, probably related to a fault system called Beagle Rupes (in darkness and also hidden by the magnetometer boom), surely has a fascinating story to tell about Mercury’s tectonic history – a key aspect of the science BepiColombo will explore once in orbit around the planet and carrying out its main mission from 2026.

Another eye-catching crater is the 130 km-wide Eminescu crater towards the top right of the image, its bright central peak feature catching the sunlight with this viewing angle. This will be a particularly interesting crater for BepiColombo to study as it contains ‘hollows’, geological features unique to Mercury.

The bright streaks radiating from the 24 km-wide Xiao Zhao crater at the right of the image also stand out against the darker background. These ‘rays’ are formed from material ejected during the impact event that carved out the crater, and fade away within a few hundreds of millions of years. This tells us that Xiao Zhao is one of the more recent impact craters on Mercury.

This brief glimpse is a tantalizing taste of the rich geology that BepiColombo is set to study in more detail from orbit. The gravity assist manoeuvre was the second at Mercury and the fifth of nine flybys overall. During its seven-year cruise to the smallest and innermost planet of the Solar System, BepiColombo makes one flyby at Earth, two at Venus and six at Mercury to help steer on course for Mercury orbit in 2025. 

The Mercury Transfer Module carries two science orbiters: ESA’s Mercury Planetary Orbiter and JAXA’s Mercury Magnetospheric Orbiter, which from complementary orbits will study all aspects of mysterious Mercury from its core to surface processes, magnetic field and exosphere, to better understand the origin and evolution of a planet close to its parent star.

Comments

Popular posts from this blog

Structure of the Universe

The structure of the universe is a complex and fascinating topic that has intrigued scientists and laypeople alike for centuries.  It is a vast expanse of space that contains everything that we know of, from stars and planets to galaxies and superclusters. Understanding the structure of the universe is essential to understanding our place in it and the fundamental laws of nature that govern it. At the largest scale, the universe appears to be homogeneous and isotropic, meaning that it appears the same in all directions and at all points in space. This is known as the cosmological principle. However, at smaller scales, the structure of the universe is highly varied and complex. The basic building blocks of the universe are subatomic particles, such as protons, neutrons, and electrons. These particles combine to form atoms, which in turn combine to form molecules, and so on. At larger scales, these molecules combine to form stars, planets, and other celestial bodies. The universe is...

Who is James Webb NASA?

James Webb, in full James Edwin Webb, (born October 7, 1906, Tally Ho, North Carolina, U.S.—died March 27, 1992, Washington, D.C.), American public servant and administrator of the National Aeronautics and Space Administration (NASA) during the Apollo program (1961–68). After graduating from the University of North Carolina at Chapel Hill in 1928, Webb became a marine pilot. He began his government career in 1932 as a congressional aide in Washington, D.C., and from 1934 to 1936 he studied law at George Washington University. He worked for Sperry Gyroscope from 1936 to 1944, when he reentered the Marine Corps for the remainder of World War II. During the administration of Pres. Harry Truman (1945–53), Webb was director of the Bureau of the Budget and undersecretary of state. When Truman left office, he went to work for the Kerr-McGee Oil Company in Oklahoma. Webb became the administrator of NASA in 1961, just months before Pres. John F. Kennedy announced the U.S. commi...

Jupiter Like Planet Discovered By NASA's Citizen Scientist

The signature for the newly discovered planet was hiding in data from NASA’s Transiting Exoplanet Survey Satellite, or TESS. Using TESS data, scientists look for changes in brightness of nearby stars, which could indicate the presence of orbiting planets. Jacobs is part of a group of citizen scientists who look at plots of TESS data, showing the change in a star’s brightness over time, in search of new planets. While professional astronomers use algorithms to scan tens of thousands of data points from stars automatically, these citizen scientists use a program called LcTools, created by Alan R. Schmitt, to inspect telescope data by eye. That’s why Jacobs’ group, which includes several citizen scientists and two veteran astronomers, calls themselves the Visual Survey Group. Many of them met while working on Planet Hunters, a NASA-funded citizen science project through Zooniverse that focused on data from NASA’s Kepler spacecraft. On February 1, 2020, Jacobs happened to notice a plot ...